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ABSTRACT

An enterprise is owned jointly by m agents, the i-th agent's share

being i > 0 where e 8. = 1. The enterprise is able to produce
i.

some non-negative n-vector x of goods where x lies in some convex

production set X . An operation consists of choosing a vector from X

and distributing it among the agents. The problem is to find an opera-

tion such that the value of the i-th agent's bundle measured in a given

price system is proportional to 'e and such that the operation is
i

(Pareto) optimal with respect to the agents' preferences. It is shown

under standard assumptions that operations which are both optimal and

proportional always exist. It is conjectured that if preferences are

given by separable concave utility functions then such operations are

unique. This is proved (a) when there are only two goods; (b) when X

is a simplex; (c) when X represents production of a single good over

n time period.
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ON OPTIMAL OPERATION OF A JOINTLY OWNED ENTERPRISE

by

David Gale and Hilton Machado

1. INTRODUCTION

An enterprise such as a farm or a firm is owned jointly by m agents,

the share of agent i being 6i . where E = 1 . The enterprise is

able to provide various amounts of n goods, thus, a non-negative n-vector

n
from some production possibility set X (non-trivial) in R+ . Each

In
agent has a preference ordering over R . The problem is then to decide

which vector x in X should be produced and how this vector should be

distributed among the owners of the enterprise. An obvious requirement for

any such scheme is that it should be (Pareto) optimal with respect to the

owners' preferences. A second requirement is that the distribution should

in some way reflect the shares of the different owners. In order to formu-

late the latter we will assume that there is some exogenously given set of

prices for the various goods. A distribution will then be called proportional

if the values at these prices of the goods-vector distributed to each owner

is proportional to his share of the enterprise. Without loss of generality

we may assume that all prices are equal to one (simply define the unit of

each good appropriately), so in a proportional distribution the total amount

of goods received by each agent is proportional to his share. A feasible

operation of this model consists of a choice of a vector x from X and

a distribution X - (xi, ... , x ) in R m  such that E x i  x
m +

The purpose of this paper is to show (a) under the usual assumptions

of closedness and convexity of production and preferences there always

exists an optimal, proportional operation. The proof is fairly standard

4
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and is related to a much more detailed study of Balasko [ 2] wlich however

does not include production. For the sake of completeness we include our

own short proof. Our main concern here is with uniqueness which we con-

jecture to be true if preferences are given by utility functions which are

increasing, strictly concave and separable. While this question is still

open for general production sets we show (b) that the optimal proportional

operation is unique in each of the following cases: (1) when there are

only two goods, (2) when the production set X is a simplex and (3) when

the model can be formulated in terms of time periods with reinvestment of

collective savings and distribution of profits among the agents along the

time.
~.1

We remark that this paper is a sequel to those of Gale and Sobel [3 1,

4 1 and Sobel [ 7 1 concerned with the case in which the enterprise pro-

duced only one good the amount of which was a random variable over which

the owners had no control. We here eliminate the stochastic element but

allow the owners to determine the output vector as well as its distribution.

The interest in the present result like that of its predecessors lies in the

uniqueness theorem. We have here an instance, as with the Shapley value and

the Nash bargaining problem, where a natural bargaining-type problem has

only one-solution satisfying certain natural requirements.

The condition of separable utility is, of course, a strong one. It

is natural, however, for the special case (3) which was the original motiva-

tion for this study. Here the enterprise is to operate over n time periods

and the goods can be taken to be the profits of each period. These can be con-

trolled by the owners who must decide how much profit to distribute among

themselves in each period and how much to reinvest for the next period,

input and output being related via given ppoduction functions f t Under

4,
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the usual assumption that each owner's utility of income is additive over

time, we have an example which satisfies the separability condition (b)

above.

An interesting but as yet unsettled question would involve incorporat-

ing a stochastic element in the dynamic model of the previous paragraph.

Suppose the return on investment depends on a random element as well as

the amount invested. What are the appropriate investment and distribution

strategies for obtaining analogues of (b) above? - the existence problem (a)

is settled under fairly general hypothesis in Machado [ 6 ].

1

-4
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2. EXISTENCE

We assume each agent has a strictly increasing, strictly convex, closed

preference ordering on Rn which can therefore be represented by (quasi-

+

concave) continuous utility functions. The production set is compact and

convex in Rn

To prove existence of optimal proportional operations, let X C R m

be the set of all distributions X = (xI , ..., x ) of the model. Choose

utility functions p such that Pi(O) = 0 and define u' X - Rm by
3. +

UM= ( l(X), ... , (X)) . If X is the set of all optimal operations,

it is well known that U - p(X) is homeomorphic to the unit simplex Z

(see e.g. Arrow-Hahn [ 1], pp. 111-112). Further, p restricted to

-i
is one-to-one because of the strict convexity of preferences so u' is a

homeomorphism from U to X . Define the map E : X - {0} - Zm -I by

E(x) (e-xl, ..., e*x m)/(e.x) where e is the n-vector all of whose

-i
coordinates are one and x = Z xi . Let =EQ i , then * is well

defined because 0 i X and continuous from U to Zm  . Further, for

any S C M = U1, ..., m} let U - {u E U ; ui = 0 for i E S} , the
5

image of the corresponding face of the unit simplex. By monotonicity,
(xi)= 0 implies x. 0 , hence e-xi = 0 so that 0 maps every face

M-1of U onto the corresponding face of Z -  The standard homotopy

result then implies that * is subjective. Thus, for some optimal opera-

tion X and some positive number X ,we have e-xi = A i for all i

as desired.

A
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3. THE CASE OF TWO GOODS

Assume now there are only two goods and the utility functions are

differentiable (for simplicity), strictly concave, increasing and separable,

2
i.e., i (xi) = i (x ij) where xi = (xilx 1 2 )

j=l i

Lemma 1:

1 2 1 2Let x = (x ,x ) and y = (y ,y ) be optimal productions where

1 1 2 2
x > y and x < y Then for each agent i with xil > yil I we must

have xi2 > yi2 Symmetrically, if xi2 < Yi2  for some i , then

Xil Y1i2

0 We prove the first assertion by contradiction. Assume xil > Yl

and xi2 < y12 " Define a new distribution X' - (xj, ... xI) =

(x1, ..., x + 6(y-x), ..., x ) where 0 < 6 < 1 . Since x' - E xi

E xi + 6(y-x) = 6x + (l-6)y ,we have that x' E X by convexity. Further,

since xil > 0 ,we see that x', 0 for 6 sufficiently small so that

the new distribution is feasible. Now defining (6) = i(xi + 6(y -x))

we have *(6) < 0 by optimality of (xl, .. , Xm) . Differentiating

using the chain rule gives

*'(0) = i(x.)(y-x) < 0

Symmetrically since we assumed xi2 < Y we get

1i (Yi)(x-y) < 0 .

Now adding inequalities and using separability of Ui

a- . - -
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(x-y) W(xi) - ijj(yi)) =

(xl -y l )(Kl(xil y  + (x 2  2)(xi2) _Ui 2 (yi2)) 1 0

but notice that both of the summands above are negative, giving the

desired contradiction. 0

Uniqueness:

Suppose that x and y are distinct optimal operations and say

1 1 2 2x > y Then x < y , otherwise y would not be efficient. It

follows that x il > Yil for some i and Xk2 < Yk2 for some k . But

then by Lemma 1 we would have xi >y i and xk < Yk . This means that

e'x i > e-yi and e.xk < e.y k  so (e-xi )/(e-x k ) > (e.yi)/(e.yk) and

therefore one of the two operations is not proportional.

'.J

4
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4. SIMPLICIAL PRODUCTION SET

We now prove uniqueness of optimal productional operations for

simplicial sets X We assume that X x ax

positive vector a = (al. .., a ) and that u is differentiable for
n

each i . The j-th partial differentiation will be indicated by a.f.3
Lemma 2:

If X = (Xl, ..., Xm) is an optimal operation, there exists a

positive vector a = (all .... a ) such that

4 a () ai(Xi) < a. for all i and j

(2) a iai(xi) = a. whenever xij > 0

0 Define a. = min (a / ij (xi)) For a given i say a/1(X
3. i

14 q ,Then (1) is satisfied by definition. To prove (2) suppose say x12 > 0

J. Given 6 > 0, consider the new operation X' = (x , ..., x') where x' = xj

for j i and x!= (x + a a , Sal, x X For small
S2 12 a 1  3 5 xin) orsmal

values of 6 , X' is a feasible operation. Let () = i(xi) . By

optimality of X ,we have 0 < 4'(O) a2 a i(x) - a1 21i(xi) It follows

that a2/32Ui (xi  < ai I hence a2/921 i(ci) a i as desired. 0

Assuming now separability, let x and y be two optimal operations

and a and a be the corresponding positive vectors given by Lemma 2.

In the same spirit as for the two-good model, we will prove that X and y

must coincide by direct use of the following result.

Lemma 3:

If xij > Yij for some agent i and some good j , then xi i Yit

for all goods I



01 By Lemma 2 and strict concavity of ui , we have that a i1j(x )i (Yiiiijj ii

a. > a P ) > ' p4'(x..) , hence a. > B. which means that x
J ii. 1J ii 1. it 2.Yi

for all Z for if x < Y for some Z , then the argument above would

prove 8.> a. 0

Uniqueness now follows at once for we see that for each i either

x > Yi or xi < yi . but as in the previous section we cannot have xi > Yi

(x i .Yi
) for all i with strict inequality for some i for this would

* contradict efficiency, and we cannot have x. Y for this would

contradict proportionality.

4..
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5. THE MULTIPERIOD PRODUCTION MODEL

Here a single good is produced in each of T consecutive periods and

agent i owns ei shares of the enterprise, ei a (positive) fraction

of the initial input x - 1 . The production output or profit associated

with input xt_I at the beginning of period t is yt M ft(xt-i) . The

production functions ft have positive non-increasing derivatives and

f t(0) - 0

The output of period t is split into individual consumption cit

by the different agents i and savings xt , input for the next period.

Now V it (c) measures the utility to agent i of consumption or income c

in period t and it is assumed that Pit has positive strictly decreasing

derivative on R . We are also given a price sequence p = (pi' "'.' PT) >0

where Pt stands for the unit price of the commodity in period t , but

appropriate scaling of production and utility functions allows for the

usual simplification, Pt = 1 for all t , which is assumed here.

A feasible operation is now a matrix s - (c., ..., Cmx) where

ci = (Cil, .... c iT) and x - (xl, ..., x T ) satisfy the following condi-

tions

(I) c it 1 0 , x t > 0 for all I , t , xT -0

(2) c, + xt - ft(xt-l) for all t > .
i i

For short, we will write s - (c,x) where c is the m x T consumption

matrix (c it) and x is the savings-vector; we occasionally refer simply

to c rather than to s

As before, agent i judges a given operation or scheme s on the

basis of two quantities, Ui(s) - [ "it(cit) and Vi(s) - ec and the
t

'"
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problem is to find in the set S of all feasible operations one which

is Pareto optimal and proportional, i.e., the m-vector U(s) is a maxi-

mal element in the partial ordering of Rm and V(s) is a positive

multiple of the share-vector 0

While here we use a different notation, better adapted to the model,

it is easy to verify that this is a particular case of the general problem

described in the Introduction. In particular, optimality of a scheme s

is equivalent to the following property

(3) for some a E E , s maximizes the function a-U(s) over

the set S

Furthermore, the existence of optimal proportional schemes follows from

our result in Section 2 by taking for production set X - {ec ; (c,x) E S}

To prove uniqueness we first establish some necessary conditions for

optimality. Roughly they say that an agent may decide to sacrifice part

of his present income for the sake of some agent's present, past or future

consumption but that no increase of the critical value a-U(s) will result

from this.

Lemma 4:

-Let (c,x) be an optimal operation associated with the vector a

in Em-1  If for some agent i and period t , ci 0 , then the follow-

ing "backward inequality"

t
(4) aiit(c) H f - -(x > aj Iii s (c s)

Si itvins+l jsv

holds for every agent j and every period s < t (we convention the value

one for "empty" products). On the other hand, if c1 s > 0 , j and s as

OR.
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before, then we have the "forward inequality"

t
(5) acw' (cs) > a p't(ct) a f'(xl)

Sj s Is - u it it v-s+l V v-i

C We prove (4) when s < t , the other cases are simpler. Consider

the operation (c',x') obtained from (c,x) as follows

(6) cjs tCjs + As (As > 0)

X? x - A
S S S

s = Xs+l As 1  where A+ 1  (x f W)

-f xf s(x s

-. 1 x xt I -At_ At tf 2 - t_2

c it t -A At M ft(x f (x
t t t t-

(all other entries as before).

By definition, s' =f(c',x') satisfies the feasibility condition (2).

As cit 0 we have f (xt) > 0 , so xt 1 >0 and ftl(x ) > 0

Recursively, xv > 0 for all v in the interval s < v < t-l . Con-

tinuity and monotonicity of the production functions now guarantee that,

for small values of A we have x' > 0 and c' > 0 so that conditions v it-

(1) also holds and s' E S . By optimality of s , we have

(7) 0 > a'(U(s') - U(s)) - a(i Gjs(cs) - ijs(cs)) +

a i(I it (c st) sit(cit)

a 6P js(c ; As)A s -ai6Plt(cit -At)A t

where we use the standard notation

6F(x;z) - (F(x + z) - F(x))/z

On the other hand, with the same 6 notation,
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(8) At 6f ft(xt-i ; -t-l )A t-

A Sf (x ;-As)A
s+l s+1 s S S

"1

so that, by multiplication,

(9) At (n 6f(xv ; - A_

Substituting this in (7), dividing by A > 0 and passing to the

limit as A. 0 (all AV 0 , necessarily) we get (4), as wanted. 0

Lemma 5:

Let (c,x) and (d,y) be optimal operations, a > 0 and 8 > 0

the associated vectors in E , 1 < i , j 5_ m and 1 < s < t < T If

we have

(10) (cit-di)(cjs -d js) < 0 and

(11) (cit-dit)(xv -y v) > 0 for all s < v < t-l

then

(12) (c i dit)(ai/8i- aI/a) > 0

0 Because of the symmetry we may as well assume that c > dit,

cjs < dis , x v> y for all the v's and prove that a /8 > a /0

As cit > 0 and dis > 0 , Lemma 4 implies

t
(13) aIIlt(c t) It fv(X)>_ 1jsis)

s+l

A& _
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tt

(14) 0 1''1 (d ) > 8 ,,t'(d t) fl f (y )j is js - i vv-

Since utilities were assumed to be strictly concave, (13) gives

t

lit its v vii~dt fvYvi
i s~lsvl

(15) a' ( ) If'(y~ j(

Multiplying now (14) and (15) together, we get a /8i  > a /8 as wanted. 0

The proof of uniqueness relies essentially on the impossibility of

certain specific patterns in the order-relationship of two schemes, an

idea introduced in [ 7]. From now on we assume that (c,x) and (d,y)

are two given optimal proportional schemes with, say V(c) - X9 , V(d) - n6

where X > n > 0 , and a , 8 (necessarily positive) are the corresponding

in-1vectors in Zm -  Furthermore, we assume that the agents are so arranged

to make the quotient a i/i an increasing function of i . One immediate

consequence of this set-up is that, if cit > dit and cjs < djs for i < J

and some pair t , s then none of the following may occur

(16) t < s and xV<Yv for t <v<s-

(17) t > s and xv> yv for s < v < t-i

(The proof is a straightforward application of Lemma 5.) Figure 1 indicates

sketchly the five impossibility situations. It is worth noticing the central

role played by Lemma 4 whose "give-away" technique goes back to [ 3 1. Case

(c) is explicit and basic in 7 ].
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c ,d relation >>...

I<
x , y relation < < < ( < <

(a) (b)

> > . . . >•i

(c) (d) (e)

FIGURE 1

Uniqueness:

D Consider the smallest i such that cit > dit for some t (if

none exists, then c =d as remarked previously). Observe first that

cs < di for all j < i and s so that X <nej , hence by the

hypothesis on X and n , we have equality and c. = d. for all suchis js

pairs.

Assume first that ft(xt-1 ) < ft(yt-) . The impossibility case (c)

described above applies to guarantee that c jt > d it for all j , hence

cjt > djt and xt < yt . Cases (a) and (b) now apply to force

cI it+l > djt+l for all j > i hence for all j and cjt+l _> d

As xt < Yt we have f t+l(x) < f t+l(yt) so that, as before, xt+l < yt+ "

Recursion leads now to the conclusion that in the last period T , cit >. diT

for all i and fT(xT-l) < fT(YTl )  a contradiction since there are no

savings in period T (XT YT 0)

=| ;
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If we assume instead that ft(x t-l) > ft(Y , we can use impossi-

bility cases (d) and (c) in a backward step-by-step procedure similar to

the one above to conclude that, in period 1, cil > dil for all agents i

and x > Yl , a contradiction since the initial output is fixed (f1(l)) 0

.

t
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